and the data given above for fluid He^3 , it can be seen that C_P decreases with increasing pressure in the vicinity of the melting curve. Gutsche (30) and Jones and Walker (31) reported a similar variation for H_2 and A , respectively.

Equation (5) combined with the thermodynamic relation,

$$\frac{dP_m}{dT_m} = \left[\left(\frac{\partial P}{\partial V} \right)_T \right]_m \frac{dV_m}{dT_m} + \left[\left(\frac{\partial P}{\partial T} \right)_V \right]_m, \tag{8}$$

leads to

$$\beta_f = \alpha_f \frac{dT_m}{dP_m} - \frac{1}{V_f} \frac{dV_f}{dP_m}. \tag{9}$$

For He³ at low pressures, the values of β_f calculated from Eq. (9) compare reasonably well with those measured directly (Fig. 4), deviating by +27 percent at $P_m = 50 \text{ kg/cm}^2$ and by -2 percent at $P_m = 225 \text{ kg/cm}^2$. At 3555 kg/cm^2 , the calculated β_f is $7.4 \times 10^{-5} \text{ cm}^2/\text{kg}$.

The theory of melting for metals that was advanced by Bonfiglioli et al. (32) predicts that $\alpha_s T_m$ is constant for a given crystal type. Unfortunately, available data are restricted to melting pressures of ~ 1 atmos but for face-centered-cubic, body-centered-cubic, and hexagonal-closest-packed metals of widely varying melting temperature, $\alpha_s T_m$ appears to be ~ 0.06 . Above the anomalous region where α_f shows a maximum, the present results for fluid He³ (and He⁴) indicate that values of $\alpha_f T_m$ rise rapidly with P_m then approach constancy around 0.05–0.06 at high melting pressures. The empirical deduction from the present work that $\alpha_s = 0.75\alpha_f$ indicates that the expansion of the solid along the melting curve follows closely that of the fluid and implies a constant value of 0.04–0.05 for $\alpha_s T_m$ at high pressures. It is interesting to compare the ratio $\alpha_s/\alpha_f = 0.75$ for He³ and He⁴ with the ratios 0.70 and 0.77 for Na and K, respectively, measured by Bridgman (33) at $P_m = 1 \text{ kg/cm}^2$.

Values of V_s can be calculated from the present measurements of V_f and ΔV_m . For He³ the ratio V_f/V_s was found to be constant and equal to 1.044 with a maximum deviation of only 0.4 percent over the full pressure range studied.⁴ Therefore $(1/V_f)(dV_f/dP_m) = (1/V_s)(dV_s/dP_m)$ which, with Eq. (8) and the ratio $\alpha_s/\alpha_f = 0.75$, leads to the following equations for He³:

$$\beta_s = 0.75\alpha_f \frac{dT_m}{dP_m} - \frac{1}{V_f} \frac{dV_f}{dP_m}, \tag{10}$$

and

$$\Delta \beta = \beta_f - \beta_s = 0.25 \alpha_f (dT_m/dP_m). \tag{11}$$

⁴ For He⁴ the ratio of V_f/V_s varied monotonically from 1.066 at $P_m=35~{\rm kg/cm^2}$ to 1.044 at $P_m=3555~{\rm kg/cm^2}$.